"

28 Eigenvalues and Eigenvectors

So far we have discussed the linear transformation \vec{x}\mapsto A\vec{x}, where \vec{x}\in\mathbb{R}^j and A\vec{x}\in \mathbb{R}^i. Now, we consider a special case \vec{x} is mapped into a scalar multiple of itself, i.e. for scalar \lambda,

    \[ A\vec{x}=\lambda \vec{x}\]

Naturally, A is a n\times n square matrix and it is a mapping from \mathbb{R}^n onto itself for n\in \mathbb{N}. To formally define relevant terms,

Definition. (Eigenvalue and Eigenvector)
Given a matrix equation A\vec{x}=\lambda\vec{x}, where A is a n\times n matrix and \lambda is a scalar,

  • \vec{x} is an eigenvector of A satisfying

        \[ A\vec{x}=\lambda\vec{x}\]

    where \vec{x}\neq \vec{0}.

  • Such \lambda is called an eigenvalue.

Note that the set of eigenvectors is in fact \mathrm{Nul}(A-\lambda I), where \mathrm{Nul}(A-\lambda I)\neq \left\lbrace\vec{0}\right\rbrace. Therefore, this set, a subspace of \mathbb{R}^n, is called the eigenspace of A corresponding to \lambda. Let us illustrate with an example.

Example. Examine whether 3 is an eigenvalue of A=\begin{pmatrix} 3 & 1 & 0\\ 2 & -1 & 7\\ 1 & 1 & 1 \end{pmatrix}.

Let us find the \mathrm{Nul}(A-3I) by letting A\vec{x}=3\vec{x}.
Then,

    \begin{align*} A-3I &= \begin{pmatrix} 0 & 1 & 0\\ 2 & -4 & 7\\ 1 & 1 & -2 \end{pmatrix}\\ & \sim \begin{pmatrix} 2 & 0 & 7\\ 1 & 0 & -2\\ 0 & 1 & 0 \end{pmatrix}\\ & \sim \begin{pmatrix} 0 & 0 & 11\\ 1 & 0 & -2\\ 0 & 1 & 0 \end{pmatrix}\\ & \sim \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} =I \end{align*}

Therefore, A-3I is invertible and \mathrm{Nul}(A) = \left\lbrace \vec{0}\right\rbrace.
Therefore, 3 is not an eigenvalue of A.

Characteristic Equation

We saw, for non-trivial solutions of A\vec{x}=\lambda\vec{x} to exist, A-\lambda I has to be singular, i.e not invertible. That is,

    \[ \mathrm{det}\left( A-\lambda I\right)=0\]

We call this a characteristic equation of A. And by solving this characteristic equation, we can efficiently identify eigenvalues.

Diagonalization

Now we turn our attention to decomposition of a matrix, factorizing into multiple matrices. Suppose we want to compute A^{n}, the n-th power of a n\times n matrix A, where the value of n\in\mathbb{N} is large. Then, it would be a computationally expensive task to do it straightforward. However, if it is the case a given matrix can be decomposed, this cumbersome task can be substantially lightened. In this section, we introduce a special case of decomposition or factorization of a matrix called diagonalization.

Definition. (Diagonalization)
A n\times n matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix D such that

    \[ A=PDP^{-1}\]

Note how easy and lightweighted the involved computation of the n-th power of A^n becomes when A is diagonalizable as PDP^{-1}.

    \begin{align*} A^n &= \left( PDP^{-1}\right)^n\\ &= \left( PDP^{-1}\right)\left( PDP^{-1}\right)\cdots\left( PDP^{-1}\right)\\ &= PD^{n}P^{-1} \end{align*}

Let us illustrate with an example.

Example. Compute A^{100} of a diagonalizable matrix A=\begin{pmatrix} 4 & 0 & 1\\ -2 & 1 & 0\\ -2 & 0 & 1 \end{pmatrix}, whose eigenvalues are \lambda=1,2,3.

1. Let us first find the eigenvectors of A, where non-trivial solutions of \left(A-\lambda I\right)\vec{x}=0.

(a) A-I = \begin{pmatrix} 3 & 0 & 1\\ -2 & 0 & 0\\ -2 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix}.
Therefore, \vec{x} =\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 0\\ x_2\\ 0 \end{pmatrix} = x_2\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix}, for x_2\in \mathbb{R}.

(b) A-2I = \begin{pmatrix} 2 & 0 & 1\\ -2 & -1 & 0\\ -2 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{2}\\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix}.\\
Therefore, \vec{x} =\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}x_3\\ x_3\\ x_3 \end{pmatrix} = x_3\begin{pmatrix} -\frac{1}{2}\\ 1\\ 1 \end{pmatrix}, for x_3\in \mathbb{R}.

(c) A-3I = \begin{pmatrix} 1 & 0 & 1\\ -2 & -2 & 0\\ -2 & 0 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix}.\\
Therefore, \vec{x} =\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} -x_3\\ x_3\\ x_3 \end{pmatrix} = x_3\begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix}, for x_3\in \mathbb{R}.

2. Construct P=\begin{pmatrix} 0 & -1 & -\frac{1}{2}\\ 1 & 1 & 1\\ 0 & 1 & 1 \end{pmatrix} from linearly independent eigenvectors identified above, where the order is irrelevant.

Then, identify P^{-1}.

    \begin{align*} \begin{pmatrix} P & I \end{pmatrix} &= \begin{pmatrix} 0 & -1 & -\frac{1}{2} & 1 & 0 & 0\\ 1 & 1 & 1 & 0 & 1 & 0\\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}\\ &\sim \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & -1\\ 0 & 1 & 0 & -2 & 0 & -1\\ 0 & 0 & 1 & 2 & 0 & 2 \end{pmatrix} = \begin{pmatrix} I & P^{-1} \end{pmatrix} \end{align*}

Therefore, P^{-1} =\begin{pmatrix} 0 & 1 & -1\\ -2 & 0 & -1\\ 2 & 0 & 2 \end{pmatrix}.

3.  Construct D = \begin{pmatrix} 1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix} so that the order of eigenvalues matches the order P was constructed.

4. Compute A^{100}

    \begin{align*} A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= PD^{100}P^{-1}\\ &= \begin{pmatrix} 0 & -1 & -\frac{1}{2}\\ 1 & 1 & 1\\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix}^{100} \begin{pmatrix} 0 & 1 & -1\\ -2 & 0 & -1\\ 2 & 0 & 2 \end{pmatrix}\\ &= \begin{pmatrix} 0 & -1 & -\frac{1}{2}\\ 1 & 1 & 1\\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1^{100} & 0 & 0\\ 0 & 3^{100} & 0\\ 0 & 0 & 2^{100} \end{pmatrix} \begin{pmatrix} 0 & 1 & -1\\ -2 & 0 & -1\\ 2 & 0 & 2 \end{pmatrix}\\ &= \begin{pmatrix} 2\cdot 3^{100}-2^{100} & 1 & -1-3^{100}+2^{101}\\ -2\cdot 3^{100}+2^{101} & 1 & -1-3^{100}+2^{101}\\ -2\cdot 3^{100}+2^{101} & 0 & -3^{100}+2^{101} \end{pmatrix} \end{align*}

Therefore,

    \[ A^{100} = \begin{pmatrix} 2\cdot 3^{100}-2^{100} & 1 & -1-3^{100}+2^{101}\\ -2\cdot 3^{100}+2^{101} & 1 & -1-3^{100}+2^{101}\\ -2\cdot 3^{100}+2^{101} & 0 & -3^{100}+2^{101} \end{pmatrix}\]

Note that the computation of A^{n} of a diagonalizable matrix A=PDP^{-1} is substantially simplified by the property of a diagonal matrix D:

    \[ D^n = \begin{pmatrix} d_1 &0 &\cdots &0\\ 0 &d_2 &\cdots &\vdots\\ \vdots &\cdots &\ddots &0\\ 0 &\cdots &0 &d_n\\ \end{pmatrix}^n = \begin{pmatrix} d_1^n &0 &\cdots &0\\ 0 &d_2^n &\cdots &\vdots\\ \vdots &\cdots &\ddots &0\\ 0 &\cdots &0 &d_n^n\\ \end{pmatrix}\]

License

Portfolio for Bachelor of Science in Mathematics Copyright © by Donovan D Chang. All Rights Reserved.