"

27 Vector Spaces

In the introduction, we discussed the modern understanding of linear systems as vector spaces. To begin with, let us formally define a vector space accompanied with axioms.

Definition. (Vector Space)
A vector space} is a set V upon which the operations, addition} and scalar multiplication} are defined, subject to the following axioms:

For all \vec{x},\vec{y},\vec{z}\in V, and for all scalars c,d,

  1. \langle V,+\rangle is a group.
  2. c\vec{x}\in V
  3. c(\vec{x}+\vec{y})=c\vec{x}+c\vec{y}
  4. (c+d)\vec{x}=c\vec{x}+c\vec{y}
  5. c(d\vec{x})=(cd)\vec{x}
  6. 1\vec{x}=\vec{x}

Do you get a sense of what a vector space is? In fact, the notion of vector space is quite familiar to us, but we often did not adapt the vector space perspective. Let us think of a 2-dimensional xy Cartesian coordinate system. It is interesting to see any coordinate (x,y)\in \mathbb{R} \times \mathbb{R} can be seen as a vector space spanned by \vec{e_x}=\begin{pmatrix} 1\\ 0 \end{pmatrix} and \vec{e_y}=\begin{pmatrix} 0\\ 1 \end{pmatrix}. That is,

    \[ \mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \mathrm{Span}\lbrace \vec{e_x},\vec{e_y}\rbrace =\left\lbrace \begin{pmatrix} x\\ y \end{pmatrix} = x\begin{pmatrix} 1\\ 0 \end{pmatrix} + y\begin{pmatrix} 0\\ 1 \end{pmatrix}: x,y\in \mathbb{R} \right\rbrace\]

Euclidean Space \left(\mathbb{R}^n\right)

The example we discussed was the xy Cartesian coordinate system in the light of 2-dimensional vector space, i.e. \mathbb{R} \times \mathbb{R} = \mathbb{R}^2. In fact, this can be expanded to the xyz Cartesian coordinate system or a 3-dimensional vector space \mathbb{R}^3, and generalized to n-dimensional vector space \mathbb{R}^n for n\in \mathbb{N}, though not easily visualizable. We call this a Euclidean space. For intuitive exploration, we limit our focus to low-dimensional spaces such as \mathbb{R}^2 and \mathbb{R}^3 in this summary.

Let us reconsider the example \mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \mathrm{Span}\lbrace \vec{e_x},\vec{e_y}\rbrace. The vectors in the spanning set coincided with the unit vector on x– and y-axis, respectively. However, it need not be a case. That is, so long as at least two vectors of non-zero magnitude with non-zero angle are included in the set, the set can span the whole \mathbb{R}^2. Let us illustrate with an example.

Example. Show that \mathbb{R}^2 = \mathrm{Span}\left\lbrace \begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}\right\rbrace, where \theta\in (0,\pi).

Expressing \mathrm{Span}\left\lbrace \begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}\right\rbrace in a parametric vector form, we have, for all x,y\in \mathbb{R}

    \[ x\begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}+ y\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} x\cos\theta +y\\ x\sin\theta \end{pmatrix}\]

Let r\in \mathbb{R}, and choose x=\frac{r}{\sin\theta}.
Then, there exists x=\frac{r}{\sin\theta} such that x\sin\theta=\frac{r}{\sin\theta}\cdot \sin\theta=r\in \mathbb{R}.
Therefore, \mathbb{R}\subseteq \left\lbrace x\sin\theta: x\in \mathbb{R},\theta\in(0,\pi)\right\rbrace.

Now, choose y=-x\cos\theta +r.
Then, there exists y=-x\cos\theta +r such that x\cos\theta+y=x\cos\theta+\left(-x\cos\theta +r\right)=r.
Therefore, \mathbb{R}\subseteq \left\lbrace x\cos\theta +y: x,y\in \mathbb{R},\theta\in(0,\pi)\right\rbrace.

We omit the rest of the proof, and conclude \mathbb{R}^2 = \mathrm{Span}\left\lbrace \begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}\right\rbrace, where \theta\in (0,\pi).

Though we have not provided a complete proof, we believe the reader, at least intuitively, saw the possibility of spanning the whole \mathbb{R}^2 given 2 vectors of not a scalar multiple of each other. Also, note that the continuity or the completeness axiom of \mathbb{R} is embedded in our proof.

 

Subspace

Now, we move onto subspace, a subset of a vector space. Formal definition is as follows:

Definition. (Subspace)
Given a vector space V, a subspace H is a subset of V such that

  1. \vec{0}\in H
  2. H is closed under addition
  3. H is closed under scalar multiplication

In short, a subspace can be thought of a subset of a vector space containing the origin, denoted by \vec{0}. However, note that a subspace is defined on the space of the same dimension. That is,

    \[\mathbb{R}^m \not\subset \mathbb{R}^n \text{ for any } m\neq n\]

For example, a subset H=\left\lbrace \begin{pmatrix} x\\y\\0 \end{pmatrix}: x,y\in \mathbb{R} \right\rbrace is essentially an xy plane, yet is defined on \mathbb{R}^3, and thus a subset of \mathbb{R}^3. Again, in fact, \mathbb{R}^2 \not\subset \mathbb{R}^3.

Null Space and Column Space

We shall conclude this chapter introducing 2 other important concepts, null space and column space. In short, a null space is a set of solutions where \vec{b}=0. That is,

Definition. (Null Space)
For a linear system A\vec{x}=\vec{0}, the null space of A is

    \[ \mathrm{Nul}(A) = \left\lbrace \vec{x}:A\vec{x}=0 \right\rbrace\]

Column space is another term for a spanned set whose element is every column of a given matrix. That is,

Definition. (Column Space)
The column space of A= \begin{pmatrix} \vec{c_1} & \vec{c_2} & \cdots & \vec{c_j} \end{pmatrix} is

    \[ \mathrm{Col}(A) =\mathrm{Span} \left\lbrace \vec{c_1}, \vec{c_2}, \cdots, \vec{c_j}\right\rbrace\]

Let us illustrate with an example.

Example. Identify the column and null spaces of A= \begin{pmatrix} 2 & 3\\ -2 & 1\\ 1 & -1 \end{pmatrix}.

1. \mathrm{Nul}(A)
Let us row-reduce the augmented matrix of A. Then,

    \begin{align*} \begin{pmatrix} A & \vec{x} & \vec{0} \end{pmatrix} &= \begin{pmatrix} 2 & 3 & 0\\ -2 & 1 & 0\\ 1 & -1 & 0 \end{pmatrix}\\ &\sim \begin{pmatrix} 2 & 3 & 0\\ 0 & 4 & 0\\ 0 & -\frac{5}{2} & 0 \end{pmatrix}\\ &\sim \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}\\ \end{align*}

Therefore, there only exists a trivial answer \vec{x}=\vec{0}, where x_1=x_2=0.
Therefore,

    \[ \mathrm{Nul}(A) = \vec{0}\]

2. \mathrm{Col}(A)
By definition,

    \begin{align*} \mathrm{Col}(A) &= \mathrm{Span} \left\lbrace \begin{pmatrix} 2\\-2\\1 \end{pmatrix}, \begin{pmatrix} 3\\1\\-1 \end{pmatrix} \right\rbrace\\ &= \left\lbrace x\begin{pmatrix} 2\\-2\\1 \end{pmatrix} +y\begin{pmatrix} 3\\1\\-1 \end{pmatrix}:x,y\in \mathbb{R} \right\rbrace \end{align*}

Therefore, \mathrm{Nul}(A) = \vec{0} and \mathrm{Col}(A) = \left\lbrace x\begin{pmatrix} 2\\-2\\1 \end{pmatrix} +y\begin{pmatrix} 3\\1\\-1 \end{pmatrix}:x,y\in \mathbb{R} \right\rbrace.

Note that both \mathrm{Nul}(A) and \mathrm{Col}(A) are subspaces of \mathbb{R}^j, while the null space is implicitly defined, and the column space explicitly. Also, note that \mathrm{Nul}(A) is in fact equivalent to the kernel of the given linear transformation. Recall the definition of kernel is a collection of elements whose image is an identity element in the range, in this case \vec{0}.

License

Portfolio for Bachelor of Science in Mathematics Copyright © by Donovan D Chang. All Rights Reserved.