"

8 Organic compounds

Learning Objectives

After reading this section, you should be able to-

  • Define the term organic molecule.
  • Explain the relationship between monomers and polymers.
  • Define and provide examples of dehydration synthesis and hydrolysis reactions.
  • Compare and contrast the general molecular structure of carbohydrates, proteins, lipids, and nucleic acids using chemical formulas.
  • Describe the building blocks of carbohydrates, proteins, lipids, and nucleic acids, and explain how these building blocks combine with themselves or other molecules to create complex molecules in each class, providing specific examples.
  • Describe the four levels of protein structure and the importance of protein shape for function.

Organic compounds typically consist of groups of carbon atoms covalently bonded to hydrogen, usually oxygen, and often other elements as well. Created by living things, they are found throughout the world, in soils and seas, commercial products, and every cell of the human body. The four types most important to human structure and function are: carbohydrates, lipids, proteins, and nucleotides. Before exploring these compounds, you need to first understand the chemistry of carbon.

The Chemistry of Carbon

What makes organic compounds ubiquitous is the chemistry of their carbon core. Recall that carbon atoms have four electrons in their valence shell, and that the octet rule dictates that atoms tend to react in such a way as to complete their valence shell with eight electrons. Carbon atoms do not complete their valence shells by donating or accepting four electrons. Instead, they readily share electrons via covalent bonds.

Normally, carbon atoms share with other carbon atoms, often forming a long carbon chain referred to as a carbon skeleton. When they share, however, they do not share all their electrons exclusively with each other. Rather, carbon atoms tend to share electrons with a variety of other elements, one of which is always hydrogen. Carbon and hydrogen groupings are called hydrocarbons. If you study the figures of organic compounds in the remainder of this chapter, you will see several with chains of hydrocarbons in one region of the compound.

Many combinations are possible to fill carbon’s four “vacancies.” Carbon may share electrons with oxygen or nitrogen or other atoms in a particular region of an organic compound. Moreover, the atoms to which carbon atoms bond may also be part of a functional group. A functional group is a group of atoms linked by strong covalent bonds and tend to function in chemical reactions as a single unit. You can think of functional groups as tightly knit “cliques” whose members are unlikely to be parted. Five functional groups are important in human physiology: the hydroxyl, carboxyl, amino, methyl and phosphate groups (Table 8.1).

Functional Group Structural

Formula

Importance
Hydroxyl —O—H Hydroxyl groups are polar. They are components of all four types of organic compounds discussed in this chapter. They are involved in dehydration synthesis and hydrolysis reactions.
Carboxyl O—C—OH Carboxyl groups are found within fatty acids, amino acids, and many other acids.
Amino —N—H2 Amino groups are found within amino acids, the building blocks of proteins.
Methyl —C—H3 Methyl groups are found within amino acids.
Phosphate —P—O42– Phosphate groups are found within phospholipids and nucleotides.
Table 8.1: Functional Groups Important in Human Physiology

Carbon’s affinity for covalent bonding means that many distinct and relatively stable organic molecules readily form larger, more complex molecules. Any large molecule is referred to as macromolecule (macro- = “large”), and the organic compounds in this section all fit this description. However, some macromolecules are made up of several “copies” of single units called monomer (mono- = “one”; -mer = “part”). Like beads in a long necklace, these monomers link by covalent bonds to form long polymers (poly- = “many”). There are many examples of monomers and polymers among the organic compounds.

Monomers form polymers by engaging in dehydration synthesis (see Figure X.X.X). As was noted earlier, this reaction results in the release of a molecule of water. Each monomer contributes; one gives up a hydrogen atom and the other gives up a hydroxyl group. Polymers are split into monomers by hydrolysis (-lysis = “rupture”). The bonds between their monomers are broken, via the donation of a molecule of water, which contributes a hydrogen atom to one monomer and a hydroxyl group to the other.

Carbohydrates

The term carbohydrate means “hydrated carbon.” Recall that the root hydro- indicates water. A carbohydrate is a molecule composed of carbon, hydrogen, and oxygen; in most carbohydrates, hydrogen and oxygen are found in the same two-to-one relative proportions they have in water. In fact, the chemical formula for a “generic” molecule of carbohydrate is (CH2O)n.

Carbohydrates are referred to as saccharides, a word meaning “sugars.” Three forms are important in the body: monosaccharides, disaccharides, and polysaccharides. Monosaccharides are the monomers of carbohydrates. Disaccharides (di- = “two”) are made up of two monomers. Polysaccharides are the polymers, and can consist of hundreds to thousands of monomers.

Monosaccharides

A monosaccharide is a monomer of carbohydrates. Five monosaccharides are important in the body. Three of these are the hexose sugars, so called because they each contain six atoms of carbon. These are glucose, fructose, and galactose  (Figure 8.1a). The remaining monosaccharides are the two pentose sugars, each of which contains five atoms of carbon. They are ribose and deoxyribose (Figure 8.1b).

This figure shows the structure of glucose, fructose, galactose, deoxyribose, and ribose.
Figure 8.1 – Five Important Monosaccharides

Disaccharides

This figure shows the structure of sucrose, lactose, and maltose.
Figure 8.2 – Three Important Disaccharides: All three important disaccharides form by dehydration synthesis.

A disaccharide is a pair of monosaccharides. Disaccharides are formed via dehydration synthesis, and the bond linking them is referred to as a glycosidic bond (glyco- = “sugar”). Three disaccharides (Figure 8.2) are important to humans. These are sucrose, commonly referred to as table sugar, lactose, or milk sugar, and maltose, or malt sugar. As you can tell from their common names, you consume these in your diet, however, your body cannot use them directly. Instead, in the digestive tract, they are split into their component monosaccharides via hydrolysis.

Polysaccharides

Polysaccharides can contain a few to a thousand or more monosaccharides. Three are important to the body (Figure 8.3):

  • Starches are polymers of glucose. They occur in long chains called amylose or branched chains called amylopectin, both of which are stored in plant-based foods and are relatively easy to digest.
  • Glycogen is also a polymer of glucose, but it is stored in the tissues of animals, especially in the muscles and liver. It is not considered a dietary carbohydrate because very little glycogen remains in animal tissues after slaughter, however, the human body stores excess glucose as glycogen, again, in the muscles and liver.
  • Cellulose, a polysaccharide that is the primary component of the cell wall of green plants, is the component of plant food referred to as “fiber”. In humans, cellulose/fiber is not digestible, however, dietary fiber has many health benefits. It helps you feel full so you eat less, it promotes a healthy digestive tract, and a diet high in fiber is thought to reduce the risk of heart disease and possibly some forms of cancer.
    This figure shows the structure of starch, glycogen, and cellulose.
    Figure 8.3 – Three Important Polysaccharides: Three important polysaccharides are starches, glycogen, and fiber.

Functions of Carbohydrates

The body obtains carbohydrates from plant-based foods. Grains, fruits, and legumes and other vegetables provide most of the carbohydrate in the human diet, although lactose is found in dairy products.

Although most body cells can break down other organic compounds for fuel, all body cells can use glucose. Moreover, nerve cells (neurons) in the brain, spinal cord, and through the peripheral nervous system, as well as red blood cells, can only use glucose for fuel. In the breakdown of glucose for energy, molecules of adenosine triphosphate, better known as ATP, are produced. Adenosine triphosphate (ATP) is composed of a ribose sugar, an adenine base, and three phosphate groups. ATP releases free energy when its phosphate bonds are broken, and thus supplies ready energy to the cell. More ATP is produced in the presence of oxygen (O2) than in pathways that do not use oxygen. The overall reaction for the conversion of the energy in glucose to energy stored in ATP can be written:

C6H12O6 + 6 O2 → 6 CO2 + 6 H2O + ATP

In addition to being a critical fuel source, carbohydrates are present in very small amounts in cells’ structure. For instance, some carbohydrate molecules bind with proteins to produce glycoproteins, and others combine with lipids to produce glycolipids, both of which are found in the membrane that encloses the contents of body cells.

Lipids

A lipid is one of a highly diverse group of compounds made up mostly of hydrocarbons. The few oxygen atoms they contain are often at the periphery of the molecule. Their nonpolar hydrocarbons make all lipids hydrophobic. In water, lipids do not form a true solution, but they may form an emulsion, which is the term for a mixture of solutions that do not mix well.

Triglycerides

A triglyceride is one of the most common dietary lipid groups, and the type found most abundantly in body tissues. This compound, which is commonly referred to as a fat, is formed from the synthesis of two types of molecules (Figure 8.4):

  • A glycerol backbone at the core of triglycerides, consisting of three carbon atoms.
  • Three fatty acids, long chains of hydrocarbons with a carboxyl group and a methyl group at opposite ends, extending from each of the carbons of the glycerol.
    This image shows the reaction for the formation of triglycerides.
    Figure 8.4 – Triglycerides: Triglycerides are composed of glycerol attached to three fatty acids via dehydration synthesis. Notice that glycerol gives up a hydrogen atom, and the carboxyl groups on the fatty acids each give up a hydroxyl group

Triglycerides form via dehydration synthesis. Glycerol gives up hydrogen atoms from its hydroxyl groups at each bond, and the carboxyl group on each fatty acid chain gives up a hydroxyl group. A total of three water molecules are thereby released.

This diagram shows the chain structures of a saturated and an unsaturated fatty acid.
Figure 8.5 – Fatty Acid Shapes: The level of saturation of a fatty acid affects its shape. (a) Saturated fatty acid chains are straight. (b) Unsaturated fatty acid chains are kinked.

Fatty acid chains that have no double carbon bonds anywhere along their length and therefore contain the maximum number of hydrogen atoms are called saturated fatty acids. These straight, rigid chains pack tightly together and are solid or semi-solid at room temperature (Figure 8.5a). Butter and lard are examples, as is the fat found on a steak or in your own body. In contrast, fatty acids with one double carbon bond are kinked at that bond (Figure 8.5b). These monounsaturated fatty acids are therefore unable to pack together tightly, and are liquid at room temperature. Polyunsaturated fatty acids contain two or more double carbon bonds, and are also liquid at room temperature. Plant oils such as olive oil typically contain both mono- and polyunsaturated fatty acids.

Whereas a diet high in saturated fatty acids increases the risk of heart disease, a diet high in unsaturated fatty acids is thought to reduce the risk. This is especially true for the omega-3 unsaturated fatty acids found in cold-water fish such as salmon. These fatty acids have their first double carbon bond at the third hydrocarbon from the methyl group (referred to as the omega end of the molecule).

Finally, trans fatty acids found in some processed foods, including some stick and tub margarines, are thought to be even more harmful to the heart and blood vessels than saturated fatty acids. Trans fats are created from unsaturated fatty acids (such as corn oil) when chemically treated to produce partially hydrogenated fats.

As a group, triglycerides are a major fuel source for the body. When you are resting or asleep, a majority of the energy used to keep you alive is derived from triglycerides stored in your fat (adipose) tissues. Triglycerides also fuel long, slow physical activity such as gardening or hiking, and contribute a modest percentage of energy for vigorous physical activity. Dietary fat also assists the absorption and transport of the nonpolar fat-soluble vitamins A, D, E, and K. Additionally, stored body fat protects and cushions the body’s bones and internal organs, and acts as insulation to retain body heat.

Fatty acids are also components of glycolipids, which are sugar-fat compounds found in the cell membrane. Lipoproteins are compounds in which the hydrophobic triglycerides are packaged in protein envelopes for transport in body fluids.

Phospholipids

This figure shows the chemical structure of different lipids.
Figure 8.6 – Other Important Lipids: (a) Phospholipids are composed of two fatty acids, glycerol, and a phosphate group. (b) Sterols are ring-shaped lipids. Shown here is cholesterol. (c) Prostaglandins are derived from unsaturated fatty acids. Prostaglandin E2 (PGE2) includes hydroxyl and carboxyl groups.

As its name suggests, a phospholipid is a bond between the glycerol component of a lipid and a phosphorous molecule. In fact, phospholipids are similar in structure to triglycerides. However, instead of having three fatty acids, a phospholipid is generated from a diglyceride, a glycerol with just two fatty acid chains (Figure 8.6). The third binding site on the glycerol is taken up by the phosphate group, which in turn is attached to a polar “head” region of the molecule. Recall that triglycerides are nonpolar and hydrophobic. This still holds for the fatty acid portion of a phospholipid compound. However, the head of a phospholipid contains charges on the phosphate groups, as well as on the nitrogen atom. These charges make the phospholipid head hydrophilic. Therefore, phospholipids are said to have hydrophobic tails, containing the neutral fatty acids, hydrophilic heads, the charged phosphate groups, and nitrogen atom.

Steroids

A steroid compound (referred to as a sterol) has as its foundation a set of four hydrocarbon rings bonded to a variety of other atoms and molecules (Figure 8.6b). Although both plants and animals synthesize sterols, the type that makes the most important contribution to human structure and function is cholesterol, which is synthesized by the liver in humans and animals and is also present in most animal-based foods. Like other lipids, cholesterol’s hydrocarbons make it hydrophobic, however, it has a polar hydroxyl head that is hydrophilic. Cholesterol is an important component of bile acids and compounds that help emulsify dietary fats. In fact, the word’s root chole- refers to bile. Cholesterol is also a building block of many hormones, signaling molecules that the body releases to regulate processes at distant sites. Finally, like phospholipids, cholesterol molecules are found in the cell membrane, where their hydrophobic and hydrophilic regions help regulate the flow of substances into and out of the cell.

Prostaglandins

Like a hormone, a prostaglandin is one of a group of signaling molecules, but prostaglandins are derived from unsaturated fatty acids (Figure 8.6c). One reason that the omega-3 fatty acids found in fish are beneficial is that they stimulate the production of certain prostaglandins that help regulate aspects of blood pressure and inflammation, and thereby reduce the risk for heart disease. Prostaglandins also sensitize nerves to pain. One class of pain-relieving medications called nonsteroidal anti-inflammatory drugs (NSAIDs) works by reducing the effects of prostaglandins.

Proteins

You might associate proteins with muscle tissue, but in fact, proteins are critical components of all tissues and organs. A protein is an organic molecule composed of amino acids linked by peptide bonds. Proteins include the keratin in the epidermis of skin that protects underlying tissues, and the collagen found in the dermis of skin, in bones, and in the meninges that cover the brain and spinal cord. Proteins are also components of many of the body’s functional chemicals, including digestive enzymes in the digestive tract, antibodies, the neurotransmitters that neurons use to communicate with other cells, and the peptide-based hormones that regulate certain body functions (for instance, growth hormone). While carbohydrates and lipids are composed of hydrocarbons and oxygen, all proteins also contain nitrogen (N), and many contain sulfur (S), in addition to carbon, hydrogen, and oxygen.

Microstructure of Proteins

Proteins are polymers made up of nitrogen-containing monomers called amino acids. An amino acid is a molecule composed of an amino group and a carboxyl group, together with a variable side chain. Just 20 different amino acids contribute to nearly all of the thousands of different proteins important in human structure and function. Body proteins contain a unique combination of a few dozen to a few hundred of these 20 amino acid monomers. All 20 of these amino acids share a similar structure (Figure 8.7). All consist of a central carbon atom to which the following are bonded:

  • a hydrogen atom
  • an alkaline (basic) amino group NH2 (see Table X.X)
  • an acidic carboxyl group COOH (see Table X.X)
  • a variable group
This figure shows the structure of an amino acid.
Figure 8.7 – Structure of an Amino Acid

Notice that all amino acids contain both an acid (the carboxyl group) and a base (the amino group) (amine = “nitrogen-containing”). For this reason, they make excellent buffers, helping the body regulate acid–base balance. What distinguishes the 20 amino acids from one another is their variable group, which is referred to as a side chain or an R-group. This group can vary in size and can be polar or nonpolar, giving each amino acid its unique characteristics. For example, the side chains of two amino acids—cysteine and methionine—contain sulfur. Sulfur does not readily participate in hydrogen bonds, whereas all other amino acids do. This variation influences the way that proteins containing cysteine and methionine are assembled.

This figure shows the formation of a peptide bond, highlighted in blue.
Figure 8.8 – Structure of an Amino Acid: Different amino acids join together to form peptides, polypeptides, or proteins via dehydration synthesis. The bonds between the amino acids are peptide bonds.

Amino acids join via dehydration synthesis to form protein polymers (Figure 8.8). The unique bond holding amino acids together is called a peptide bond. A peptide bond is a covalent bond between two amino acids that is formed by dehydration synthesis. A peptide, in fact, is a very short chain of amino acids. Strands containing fewer than about 100 amino acids are generally referred to as polypeptides rather than proteins.

The body is able to synthesize most of the amino acids from components of other molecules, however, nine cannot be synthesized and have to be consumed in the diet. These are known as the essential amino acids.

Free amino acids available for protein construction are said to reside in the amino acid pool within cells. Structures within cells use these amino acids when assembling proteins. If a particular essential amino acid is not available in sufficient quantities in the amino acid pool, however, synthesis of proteins containing it can slow or even cease.

Shape of Proteins

Just as a fork cannot be used to eat soup and a spoon cannot be used to spear meat, a protein’s shape is essential to its function. A protein’s shape is determined, most fundamentally, by the sequence of amino acids of which it is made (Figure 8.9a). The sequence is called the primary structure of the protein.

This figure shows the secondary structure of peptides. The top panel shows a straight chain, the middle panel shows an alpha-helix and a beta sheet. The bottom panel shows the tertiary structure and fully folded protein.
Figure 8.9 – The Shape of Proteins: (a) The primary structure is the sequence of amino acids that make up the polypeptide chain. (b) The secondary structure, which can take the form of an alpha-helix or a beta-pleated sheet, is maintained by hydrogen bonds between amino acids in different regions of the original polypeptide strand. (c) The tertiary structure occurs as a result of further folding and bonding of the secondary structure. (d) The quaternary structure occurs as a result of interactions between two or more tertiary subunits. The example shown here is hemoglobin, a protein in red blood cells which transports oxygen to body tissues.

Although some polypeptides exist as linear chains, most are twisted or folded into more complex secondary structures that form when bonding occurs between amino acids with different properties at different regions of the polypeptide. The most common secondary structure is a spiral called an alpha-helix. If you were to take a length of string and simply twist it into a spiral, it would not hold the shape. Similarly, a strand of amino acids could not maintain a stable spiral shape without the help of hydrogen bonds, which create bridges between different regions of the same strand (Figure 8.9b). Less commonly, a polypeptide chain can form a beta-pleated sheet, in which hydrogen bonds form bridges between different regions of a single polypeptide that has folded back upon itself, or between two or more adjacent polypeptide chains.

The secondary structure of proteins further folds into a compact three-dimensional shape, referred to as the protein’s tertiary structure (Figure 8.9c). In this configuration, amino acids that had been very distant in the primary chain can be brought quite close via hydrogen bonds. Often, two or more separate polypeptides bond to form an even larger protein with a quaternary structure (Figure 8.9d). The polypeptide subunits forming a quaternary structure can be identical or different. For instance, hemoglobin, the protein found in red blood cells is composed of four tertiary polypeptides, two of which are called alpha chains and two of which are called beta chains.

When they are exposed to extreme heat, acids, bases, and certain other substances, proteins will denature. Denaturation is a change in the structure of a molecule through physical or chemical means. Denatured proteins lose their functional shape and are no longer able to carry out their jobs. An everyday example of protein denaturation is the curdling of milk when acidic lemon juice is added.

The contribution of the shape of a protein to its function can hardly be exaggerated. For example, the long, slender shape of protein strands that make up muscle tissue is essential to their ability to contract (shorten) and relax (lengthen). As another example, bones contain long threads of a protein called collagen that acts as scaffolding upon which bone minerals are deposited. These elongated proteins, called fibrous proteins, are strong and durable and typically hydrophobic.

In contrast, globular proteins are globes or spheres that tend to be highly reactive and are hydrophilic. The hemoglobin proteins packed into red blood cells are an example (Figure 8.9d), however, globular proteins are abundant throughout the body, playing critical roles in most body functions. Enzymes, introduced earlier as protein catalysts, are examples of this. The next section takes a closer look at the action of enzymes.

Protein structure of hemoglobin

The complexity and functionality of proteins are marvelously exemplified in the structure of hemoglobin, the protein responsible for transporting oxygen in the blood. Understanding hemoglobin’s structure requires a journey through the four levels of protein architecture: primary, secondary, tertiary, and quaternary, each intricately contributing to its role.

The primary structure of hemoglobin is its foundation, defined by the unique sequence of amino acids in its polypeptide chains. Hemoglobin consists of two types of chains, alpha and beta, each encoded by specific genes. These chains are meticulously sequenced, with each amino acid’s position being crucial. This sequence dictates the way the protein will fold and ultimately determines its functionality. For instance, a single mutation in the beta chain sequence, such as the substitution of valine for glutamic acid at the sixth position, leads to sickle cell anemia, illustrating how critical the primary structure is.

As the polypeptide chains of hemoglobin elongate, they start to fold into more localized structures known as secondary structures. Within hemoglobin, the alpha-helices predominate, stabilized by hydrogen bonds between the backbone atoms. These alpha-helices form the core framework of each polypeptide chain, providing stability and a specific pattern for further folding. The precise arrangement of these helices is essential for the protein’s integrity and function.

The journey continues to the tertiary structure, where the polypeptide chains fold into their three-dimensional shapes. This level of structure is stabilized by various interactions, including hydrogen bonds, ionic bonds, hydrophobic interactions, and disulfide bridges between the side chains of amino acids. In hemoglobin, the tertiary structure allows the creation of a pocket where the heme group, the molecule that binds oxygen, is securely held. The positioning of the heme group is critical; it must be precisely oriented to facilitate the efficient binding and release of oxygen molecules.

However, hemoglobin’s true functionality comes into full view at the quaternary structure level. Hemoglobin is not a single polypeptide but a complex of four subunits: two alpha chains and two beta chains. These subunits assemble into a tetramer, forming the quaternary structure. The interaction between these subunits is not just for structural integrity but also for functional regulation. Hemoglobin exhibits cooperative binding—a phenomenon where the binding of oxygen to one subunit increases the affinity of the remaining subunits for oxygen. This cooperative binding is vital for hemoglobin’s role in efficiently picking up oxygen in the lungs and releasing it in tissues where it is needed.

The shape of hemoglobin is fundamental to its function. Each level of structure—from the primary sequence of amino acids to the intricate quaternary assembly—plays a pivotal role. The specific folding and interactions allow hemoglobin to perform its oxygen-transporting function effectively. Disruptions at any structural level can impair hemoglobin’s function, as seen in various hemoglobinopathies, which are disorders caused by abnormalities in hemoglobin structure.

Other Functions of Proteins

Advertisements for protein bars, powders, and shakes all say that protein is important in building, repairing, and maintaining muscle tissue, but the truth is that proteins contribute to all body tissues, from the skin to the brain cells. Also, certain proteins act as hormones and chemical messengers that help regulate body functions. For example, growth hormone is important for skeletal growth, among other roles.

As was noted earlier, the basic and acidic components enable proteins to function as buffers in maintaining acid–base balance, but they also help regulate fluid–electrolyte balance. Proteins attract fluid, and a healthy concentration of proteins in the blood, the cells, and the spaces between cells helps ensure a balance of fluids in these various “compartments.” Moreover, proteins in the cell membrane help to transport electrolytes in and out of the cell, keeping these ions in a healthy balance. Like lipids, proteins can bind with carbohydrates. They can thereby produce glycoproteins or proteoglycans, both of which have many functions in the body.

The body can use proteins for energy when carbohydrate and fat intake is inadequate, and stores of glycogen and adipose tissue become depleted. However, since there is no storage site for protein except functional tissues, using protein for energy causes tissue breakdown and results in body wasting.

Nucleotides

The fourth type of organic compound important to human structure and function are the nucleotides (Figure 8.10). A nucleotide is one of a class of organic compounds composed of three subunits:

  • one or more phosphate groups
  • a pentose sugar: either deoxyribose or ribose
  • a nitrogen-containing base: adenine, cytosine, guanine, thymine, or uracil
This figure shows the structure of nucleotides.
Figure 8.10 – Nucleotides: (a) The building blocks of all nucleotides are one or more phosphate groups, a pentose sugar, and a nitrogen-containing base. (b) The nitrogen-containing bases of nucleotides. (c) The two pentose sugars of DNA and RNA.

Nucleotides can be assembled into nucleic acids (DNA or RNA) or the energy compound adenosine triphosphate.

Nucleic Acids

The nucleic acids differ in their type of pentose sugar. Deoxyribonucleic acid (DNA) is polymer that stores genetic information. DNA contains deoxyribose (so-called because it has one less atom of oxygen than ribose) plus one phosphate group and one nitrogen-containing base. The “choices” of base for DNA are adenine, cytosine, guanine, and thymine. Ribonucleic acid (RNA) is a ribose-containing nucleotide that helps manifest the genetic code as protein. RNA contains ribose, one phosphate group, and one nitrogen-containing base, but the “choices” of base for RNA are adenine, cytosine, guanine, and uracil.

This figure shows a double helix.
Figure 8.11 – DNA: In the DNA double helix, two strands attach via hydrogen bonds between the bases of the component nucleotides.

Bonds formed by dehydration synthesis between the pentose sugar of one nucleic acid monomer and the phosphate group of another form a “backbone,” from which the components’ nitrogen-containing bases protrude. In DNA, two such backbones attach at their protruding bases via hydrogen bonds. These twist to form a shape known as a double helix (Figure 8.11). The sequence of nitrogen-containing bases within a strand of DNA form the genes that act as a molecular code instructing cells in the assembly of amino acids into proteins. Humans have almost 22,000 genes in their DNA, locked up in the 46 chromosomes inside the nucleus of each cell (except red blood cells which lose their nuclei during development). These genes carry the genetic code to build one’s body, and are unique for each individual except identical twins.

In contrast, RNA consists of a single strand of sugar-phosphate backbone studded with bases. Messenger RNA (mRNA) is created during protein synthesis to carry the genetic instructions from the DNA to the cell’s protein manufacturing plants in the cytoplasm and the ribosomes.

Adapted from Anatomy & Physiology by Lindsay M. Biga et al, shared under a Creative Commons Attribution-ShareAlike 4.0 International License, chapter 2.

definition

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Basic Human Physiology Copyright © by Jim Davis is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.